Scientists Discover How Correlated Disorder Boosts Superconductivity

Superconductivity is a unique state of matter in which electric current flows without any energy loss. In materials with defects, it typically emerges at very low temperatures and develops in several stages. An international team of scientists, including physicists from HSE MIEM, has demonstrated that when defects within a material are arranged in a specific pattern rather than randomly, superconductivity can occur at a higher temperature and extend throughout the entire material. This discovery could help develop superconductors that operate without the need for extreme cooling. The study has been published in Physical Review B.
Superconductivity is a state in which electric current flows through a material without any energy loss. In conventional conductors, part of the energy is converted into heat, but in superconductors, this does not occur—current flows freely and does not weaken. Today, superconductors are used in applications such as MRI machines, where superconducting coils generate strong magnetic fields. In the future, superconductors may also be integrated into systems that require lossless power transmission and high-speed signal processing. The challenge is that nearly all superconductors function only at temperatures below -140 °C, which limits their practical use. To make them more viable, physicists are working to raise their operating temperature and improve stability.
Researchers from the HSE MIEM Centre for Quantum Metamaterials, in collaboration with colleagues from MEPhI, MIPT, and the Federal University of Pernambuco, Brazil, have shown that superconductivity can be made more stable by controlling the placement of defects. Defects are deviations from a material’s ideal crystal lattice, such as excess or missing atoms, impurities, and distortions. They usually disrupt the movement of electrons and weaken superconductivity, but it is impossible to eliminate them entirely, especially in multicomponent materials. Rather than eliminating these imperfections, the scientists have proposed arranging them in a specific pattern. This type of defect distribution is known as correlated disorder.
Alexei Vagov
'Imagine a crowd of people moving chaotically in different directions—that’s a classic example of disorder. Now imagine the same crowd moving in a complex but coordinated pattern, like a mass dance—that illustrates correlated disorder,' says Alexei Vagov, Professor at the HSE Tikhonov Moscow Institute of Electronics and Mathematics. 'In superconductors, it turns out that this kind of order within disorder causes defects to actually enhance superconductivity.'

In materials with defects, superconductivity typically develops in two stages. First, isolated regions appear where superconductivity begins to emerge. Then, as the temperature drops, these regions connect, allowing current to flow throughout the entire sample. Scientists have modelled a two-dimensional superconductor with varying defect distributions—from random to correlated, where impurities are interconnected. The results show that when disorder in the material is coordinated rather than chaotic, the transition happens immediately: superconductivity emerges simultaneously throughout the entire system.
The scientists believe these findings could aid in the development of thin superconducting films, whose structures closely resemble the model used in the study. When synthesising such films, it is possible to control the placement of defects in advance, which is useful both for testing the theory and for creating materials with specified properties.
'Controlling the placement of defects at the microscopic level could enable the creation of superconductors that operate at much higher temperatures—potentially even at room temperature. This would transform superconductivity from a laboratory rarity into a technology used in everyday devices,' comments Alexei Vagov.
The study was conducted with support from the Ministry of Education and Science, Grant 075-15-2025-010, and HSE University's Basic Research Programme within the framework of the Centres of Excellence project.
See also:
HSE University to Host Second ‘Genetics and the Heart’ Congress
HSE University, the National Research League of Cardiac Genetics, and the Central State Medical Academy of the Administrative Directorate of the President will hold the Second ‘Genetics and the Heart’ Congress with international participation. The event will take place on February 7–8, 2026, at the HSE University Cultural Centre.
HSE University Develops Tool for Assessing Text Complexity in Low-Resource Languages
Researchers at the HSE Centre for Language and Brain have developed a tool for assessing text complexity in low-resource languages. The first version supports several of Russia’s minority languages, including Adyghe, Bashkir, Buryat, Tatar, Ossetian, and Udmurt. This is the first tool of its kind designed specifically for these languages, taking into account their unique morphological and lexical features.
HSE Scientists Uncover How Authoritativeness Shapes Trust
Researchers at the HSE Institute for Cognitive Neuroscience have studied how the brain responds to audio deepfakes—realistic fake speech recordings created using AI. The study shows that people tend to trust the current opinion of an authoritative speaker even when new statements contradict the speaker’s previous position. This effect also occurs when the statement conflicts with the listener’s internal attitudes. The research has been published in the journal NeuroImage.
Language Mapping in the Operating Room: HSE Neurolinguists Assist Surgeons in Complex Brain Surgery
Researchers from the HSE Center for Language and Brain took part in brain surgery on a patient who had been seriously wounded in the SMO. A shell fragment approximately five centimetres long entered through the eye socket, penetrated the cranial cavity, and became lodged in the brain, piercing the temporal lobe responsible for language. Surgeons at the Burdenko Main Military Clinical Hospital removed the foreign object while the patient remained conscious. During the operation, neurolinguists conducted language tests to ensure that language function was preserved.
HSE MIEM and AlphaCHIP Innovation Centre Sign Cooperation Agreement
The key objectives of the partnership include joint projects in microelectronics and the involvement of company specialists in supervising the research activities of undergraduate and postgraduate students. Plans also focus on the preparation of joint academic publications, the organisation of industrial placements and student internships, and professional development programmes for the company’s specialists.
AI Overestimates How Smart People Are, According to HSE Economists
Scientists at HSE University have found that current AI models, including ChatGPT and Claude, tend to overestimate the rationality of their human opponents—whether first-year undergraduate students or experienced scientists—in strategic thinking games, such as the Keynesian beauty contest. While these models attempt to predict human behaviour, they often end up playing 'too smart' and losing because they assume a higher level of logic in people than is actually present. The study has been published in the Journal of Economic Behavior & Organization.
HSE University and InfoWatch Group Sign Cooperation Agreement
HSE University and the InfoWatch Group of Companies marked the start of a new stage in their collaboration with the signing of a new agreement. The partnership aims to develop educational programmes and strengthen the practical training of specialists for the digital economy. The parties will cooperate in developing and reviewing curricula, and experts from InfoWatch will be involved in teaching and mentoring IT and information security specialists at HSE University.
Scientists Discover One of the Longest-Lasting Cases of COVID-19
An international team, including researchers from HSE University, examined an unusual SARS-CoV-2 sample obtained from an HIV-positive patient. Genetic analysis revealed multiple mutations and showed that the virus had been evolving inside the patient’s body for two years. This finding supports the theory that the virus can persist in individuals for years, gradually accumulate mutations, and eventually spill back into the population. The study's findings have been published in Frontiers in Cellular and Infection Microbiology.
HSE Scientists Use MEG for Precise Language Mapping in the Brain
Scientists at the HSE Centre for Language and Brain have demonstrated a more accurate way to identify the boundaries of language regions in the brain. They used magnetoencephalography (MEG) together with a sentence-completion task, which activates language areas and reveals their functioning in real time. This approach can help clinicians plan surgeries more effectively and improve diagnostic accuracy in cases where fMRI is not the optimal method. The study has been published in the European Journal of Neuroscience.
For the First Time, Linguists Describe the History of Russian Sign Language Interpreter Training
A team of researchers from Russia and the United Kingdom has, for the first time, provided a detailed account of the emergence and evolution of the Russian Sign Language (RSL) interpreter training system. This large-scale study spans from the 19th century to the present day, revealing both the achievements and challenges faced by the professional community. Results have been published in The Routledge Handbook of Sign Language Translation and Interpreting.


