Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Ученые предложили новую теорию происхождения генетического кода

Ученые предложили новую теорию происхождения генетического кода

© iStock

Научный консультант Международной лаборатории биоинформатики Института искусственного интеллекта и цифровых наук НИУ ВШЭ Алан Герберт предложил новое объяснение одной из нерешенных загадок биологии — происхождения генетического кода. Согласно исследованию, опубликованному в журнале Biology Letters, современный генетический код мог возникнуть благодаря самоорганизующимся молекулярным комплексам — тинкерам. Новую гипотезу автор выдвинул на основе анализа вторичных структур ДНК с помощью нейросети AlphaFold3.

Генетический код — это «алфавит», лежащий в основе функционирования любой живой системы на Земле. Он определяет, что записано в «инструкции» к организму и как ее следует читать. Современный генетический код состоит из кодонов, в каждом из которых по три нуклеотида. Эти триплеты кодируют аминокислоты, которые потом участвуют в синтезе белков. Ученые изучают генетический код уже более 70 лет, однако один из важнейших вопросов — как именно он возник — так и не получил однозначного ответа.

Научный консультант Международной лаборатории биоинформатики Института искусственного интеллекта и цифровых наук НИУ ВШЭ профессор Алан Герберт предложил новое объяснение происхождения кода. По его мнению, в ходе эволюции ключевую роль в формировании современного генетического кода играли флипоны — особые участки ДНК, способные образовывать вторичные структуры.

Классическая молекула ДНК, описанная в свое время Френсисом Криком и Джеймсом  Уотсоном, представляет собой двойную спираль, закрученную вправо. Но ученые обнаружили, что существуют и альтернативные структуры ДНК: Z-ДНК, закрученная влево; трехцепочечные и четырехцепочечные последовательности; а также ДНК с крестообразной структурой — i-мотивы. Эти необычные структуры возникают при определенных физиологических условиях, а их тип зависит от набора и порядка нуклеотидов в самом флипоне. Простейшие флипоны образуются из простых нуклеотидных повторов, поэтому предполагается, что их было достаточно в так называемом первичном бульоне.

Мария Попцова

С помощью нейросети AlphaFold3 от DeepMind Алан Герберт проанализировал характер связей между флипонами и аминокислотами. «Оказалось, что флипоны, образованные из двухбуквенных повторов, очень хорошо связываются с простенькими пептидами, состоящими из двухбуквенных аминокислотных повторов. И именно такое соответствие присутствует в современном генетическом коде», — комментирует Мария Попцова, заведующая Международной лабораторией биоинформатики НИУ ВШЭ.

Например, цитозин-гуаниновый повтор CGCGCG образует Z-ДНК. С такой последовательностью очень хорошо связывается пептид с аргинин-аланиновым повтором RARARA. В современном коде аргинину соответствует кодон CGC, а аланину — GCG. Если подробно рассмотреть структуру пространственных взаимодействий, то самая лучшая связь получается именно из непересекающихся триплетов: CGCGCG связывается с RA.

В публикации Алан Герберт рассматривает десятки примеров взаимодействия флипонов из коротких повторов с пептидами из аминокислотных повторов. Выяснилось, что при этом также могут происходить реакции, приводящие к взаимному удлинению цепей, особенно в присутствии магния и цинка. Эти металлы служат катализаторами таких реакций.

По мнению автора исследования, подобные комплексы когда-то сформировались благодаря особым компонентам — тинкерам, так называемым мастеровым природы, как их назвал Франсуа Жакоб. В работе профессора Герберта такими самовоспроизводящимися мастеровыми служат структуры, состоящие из флипонов и пептидов. Тинкеры использовали ДНК как матрицу для синтеза белков, а белки, в свою очередь, способствовали удлинению спирали ДНК. В итоге возник триплетный неперекрывающийся код: нечетное количество оснований позволяет кодировать последовательности из разных аминокислот, а характер связей между флипонами и аминокислотами требует, чтобы каждый кодон соответствовал только одной аминокислоте.

«Роль флипонов как тинкеров в первоначальной биологической эволюции — это кардинально новый взгляд на происхождение жизни. Без преувеличения можно сказать, что, если теория подтвердится экспериментально, наш коллега доктор Герберт заслуживает Нобелевской премии, — считает Мария Попцова. — Открытие взаимодействий флипонов с аминокислотами в соответствии с таблицей современного генетического кода доказывает, что возникновение генетического кода — не случайность, а естественный результат эволюции. Природа ничего не изобретает с нуля, она придумывает новые механизмы из того, что доступно. Природа действует как нерадивый мастеровой, который, когда надо быстро сделать что-то работающее, необязательно надежное и прочное, хватает то, что подвернется под руку. Именно это свойство и стоит за понятием “тинкер”».

Алан Герберт

«В целом предлагаемая схема не требует ДНК, РНК или пептидного мира для объяснения происхождения жизни, — пишет Алан Герберт в своей статье. — Вместо этого описанные тинкеры являются агентами, которые способствуют этой возможности. Они возникают из простого соответствия между низкосложными нуклеотидами и простыми пептидными полимерами, используя металлы для катализа их первоначальной репликации. Снабжая пребиотический суп копиями самих себя, эти тинкеры вполне естественно развили неперекрывающийся, триплетный генетический код».

Помимо понимания происхождения жизни, изучение тинкеров может привести к созданию новых технологий, включая искусственные самоорганизующиеся системы и самовосстанавливающиеся материалы. Способность тинкеров объединять различные химические элементы может быть использована для направленной эволюции новых биомолекул.

Вам также может быть интересно:

Ученые ВШЭ рассказали, как определить важные для речевой функции области мозга при операциях

Сотрудники Центра языка и мозга НИУ ВШЭ провели школу по трактографии — методу, который позволяет «увидеть» важнейшие связи в мозге и помогает хирургам избежать повреждений критически важных для речевой функции областей во время операции. Участниками курса стали нейрохирурги и радиологи из Москвы и других регионов страны, интересующиеся методами предоперационного картирования речи.

«Огромное счастье — возможность обсудить свои научные идеи с заинтересованными людьми»

Созданная в нижегородском кампусе Вышки Международная лаборатория динамических систем и приложений ведет глубокие теоретические изыскания и прикладные исследования, среди которых изучение океанических волн, пересоединений солнечной короны, вулканических явлений и устойчивости судов. Ее ученые, за последние 5 лет выигравшие более 20 значимых научных грантов, активно сотрудничают с российскими и зарубежными коллегами из Китая, Испании, США, Великобритании, Бразилии и других стран. О работе лаборатории новостная служба «Вышка.Главное» побеседовала с ее заведующей, профессором Ольгой Починкой.

Лингвисты НИУ ВШЭ выяснили, как билингвы используют конструкции с числительными в русском языке

Исследователи ВШЭ выделили более 4000 примеров устной русской речи билингвов из семи регионов России и выяснили: большинство нестандартных форм в конструкциях с числительными связано не только с их родным языком, но и с тем, как часто выражение встречается в повседневной речи. Например, фразы «два часа» или «пять километров» почти всегда совпадают с литературным вариантом, а вот менее привычные выражения, особенно с числительными от двух до четырех, а также с собирательными формами вроде «двое» или «трое», часто звучат иначе. Исследование опубликовано в журнале International Journal of Bilingualism.

Первый цифровой тест для оценки навыков чтения у взрослых доступен на RuStore

Центр языка и мозга НИУ ВШЭ разработал первый стандартизированный инструмент для оценки навыков чтения на русском языке у взрослых — тест «ЛексиМетр-В». Теперь он доступен в цифровом формате на платформе RuStore. Это приложение позволяет быстро и эффективно диагностировать нарушения чтения, включая дислексию, у людей в возрасте от 18 лет и старше.

Двадцать против десяти: в НИУ ВШЭ проанализировали, как развивались числительные у лезгинских народов

Считается, что в лезгинских языках Дагестана и Азербайджана изначально использовалась двадцатеричная система счета, а десятичная появилась позже. Однако новый анализ числительных в разных диалектах показал, проведенный лингвистом из НИУ ВШЭ Максимом Меленченко, что могло быть и наоборот: изначально использовался десятичный счет, а двадцатеричный появился позже. Исследование опубликовано в журнале Folia Linguistica.

Сервисы должны быть гибкими: как использовать искусственный интеллект государству

Международная лаборатория цифровой трансформации в государственном управлении НИУ ВШЭ провела круглый стол «Искусственный интеллект в государственном управлении: современные тенденции». Какие сервисы улучшит ИИ и что важно учитывать, применяя новые технологии, рассказали российские и зарубежные ученые.

Искусственный интеллект помогает точнее прогнозировать риски сложных заболеваний

Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах). Результаты опубликованы в журнале Frontiers in Medicine.

Мозг детей с аутизмом иначе слышит мир

Международный коллектив исследователей при участии ученых из Центра языка и мозга НИУ ВШЭ впервые применил в одном эксперименте два метода — магнитоэнцефалографию и морфометрический анализ — для изучения детей с расстройствами аутического спектра. Оказалось, что мозг детей с аутизмом хуже справляется с фильтрацией и пониманием звуков, особенно в той части, которая обычно отвечает за речь. Исследование опубликовано в журнале Cerebral Cortex.

Искусственный интеллект может стать катализатором устойчивого развития

Искусственный интеллект трансформирует все сферы жизни, расширяя наши возможности и границы. В то же время технологии бросают человечеству новые вызовы, связанные с безопасностью, этикой и защитой окружающей среды. На сегодняшний день каждая нейросеть оставляет за собой большой углеродный след. Однако при грамотном управлении ИИ может принести пользу планете и стать залогом устойчивой экономики будущего. Об этом рассказал научный руководитель Лаборатории алгоритмов и технологий анализа сетевых структур НИУ ВШЭ в Нижнем Новгороде Панос Пардалос в рамках XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества.

Ученые выявили особенности восприятия историй у дошкольников

Психолингвисты Центра языка и мозга ВШЭ совместно с коллегами из США и Германии впервые использовали регистрацию движений глаз во время проведения теста на определение нарративных навыков у дошкольников и взрослых. Исследователи обнаружили, что понимание историй зависит от их структуры, а вопросы про внутренние состояния персонажей вызывают трудности у детей 5-6 лет. Результаты исследования опубликованы в журнале Journal of Experimental Child Psychology.